Advantage of Photosensitive Low-k

- Multilevel interconnect integration with low-k dielectric film (LKD).
- Improvement of EB exposed pattern.
- Merits:
 - Dryetch-less process
 - Solution to dryetching problem

Strategy

Photosensitive LKD: TODAY’S PRESENTATION.

Purpose

Photosensitive Porous Low-k Interlayer Dielectric Film

Purpose

- Novel Photosensitive Porous Low-k Interlayer Dielectric Film with low-k dielectric film (LKD).
- Multilevel interconnect integration

Problem of damascene fabrication

- By dryetching and ashing.

Process Flow

- Photosensitive MSQ
- Base polymer: MSZ-MSQ
- PAG: TAZ-104 (Midori Kagaku)

SEM Micrographs

- EB energy: 50 kV, EB exposure dose: 9.0 µC/cm²
- Base polymer: MSZ-MSQ
- PAG: TAZ-104 (Midori Kagaku)

Summary

A novel photosensitive porous MSQ interlayer dielectric film was developed. Photosensitive porous MSQ (20 wt% porogen) had porosity 17 % and pore radius of 2.03 nm, and dielectric constant of 2.73.

Acknowledgement

Part of this work was supported by NEDO under the management of ASET in METI’s R&D.

Material & Film Formation

Photosensitive MSQ

Electron-Beam Exposure + PAG: TAZ-104 (Midori Kagaku)

Chemical Amplified Reaction

Electron-Beam Sensitivity

- Exposure depth versus exposure dose
- EB energy: 50 kV
- With & without porogen

Although porogen additives decreased the photosensitivity, the 200 nm line and space patterns were successfully exposed. The critical exposure dose for photosensitive MSQ was at 200 nm design size was 550 µC/cm².

Feature size versus exposure dose

- EB energy: 50 kV
- With & without porogen

Film characterization

- Porosity: Spectroscopic ellipsometry
- Dielectric constant: CV measurements
- Pore radius distribution: X-ray scattering measurements

Merits

- Decrease of hardmask and etch-step layer
- Improvement of dryetching step
- Solution to dryetching problem

- Dryetch-less process

SEM Micrographs

- EB energy: 50 kV, EB exposure dose: 9.0 µC/cm²
- Base polymer: MSZ-MSQ
- PAG: TAZ-104 (Midori Kagaku)

Acknowledgement

Part of this work was supported by NEDO under the management of ASET in METI’s R&D.

Shin-Ichi Kuroki, Susumu Sakamoto and Takamaro Kikkawa
Research Center for Nanodevices and Systems, Hiroshima University
1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8527 Japan
E-mail: [kuroki, sakamoto, kikkawa]@sxsys.hiroshima-u.ac.jp

September 17, 2003, Tokyo, JAPAN.