Ring Resonator Optical Switches for Interconnection on Si Chips

Yuichiro Tanushi and Shin Yokoyama

Research Center for Nanodevices and Systems, Hiroshima University, Japan

Si LSI with Optical Interconnects

Si based light emitting devices are difficult to be realized.

Integrate many ring resonator switches instead of LDs

Monolithic Integration except for light emitting devices

Advantage of Ring Resonator Switches

- **Mach-Zehnder interferometer type**
 - Waveguide length for switching
 - Assuming $\Delta n = 5 \times 10^{-4}$,
 - $L = \lambda / (2 \Delta n) = 850 \mu m$ ($\lambda > 0.85 \mu m$)

- **Ring resonator type**
 - Ring diameter
 - $2R = 10 - 50 \mu m$

Suitable for integration due to their compactness

Device Parameters

- Waveguide
 - $W = 2, 3 \mu m$
 - $g = 0.05, 0.10, 0.15 \mu m$
 - $R = 10 \mu m$
 - $L = 12.56 \mu m$

- $W = 0.9 \mu m$
 - $SiO_2 n = 1.447$
 - $Si n = 1.80$
 - Si substrate

- Ring resonator
 - W, g, R, L: Fixed for free spectral range > 10 nm

- Through
 - $W = 5 \mu m$

- Fabrication Process
 - Plasma enhanced chemical vapor deposition
 - CF$_4$:N$_2$ = 10:1
 - Pressure: 4.0 Pa
 - Bias: -410 V
 - Electron beam lithography
 - Dose: $14 \mu C/cm^2$
 - Reactive ion etching
 - SAL601 SR7

Single-Mode Condition

- Wavelength 1.3 μm

- TE mode

- First-order mode

- Multimode

- Single-Mode

- Second-order mode

Fabricated ring resonator
Resonance Characteristics

Valleys of through port correspond well to Peaks of drop port.

Agreement with theoretical values

W = 2 µm, g = 0.10 µm

Subpeaks are observed.

W = 3 µm, g = 0.10 µm

Multimode ring resonator behaves similarly to single-mode one.

Valleys of through port correspond well to Peaks of drop port.

Through

Drop

Gap Dependence of FWHM

Wide gap gives narrow FWHM

Simulation of Bending Loss

Multimode: Suitable for realizing compact devices

Principle and Application for Optical Switches

Cross Section of the Ring Resonator Switches

Bias V for applying electric field E

$V = D_{core} \cdot E + 2D_{cladding} \cdot \frac{\varepsilon_{core}}{\varepsilon_{cladding}} \cdot E$

ε: dielectric constant

Cladding: SiO2, KH2PO4(KDP)

Low n, High ε

Candidates of electro-optic materials

- LN LiNbO3 Widely used for EO materials
- BST (Ba,Sr)TiO3 Introduced in silicon process already
- KTN K(Ta,Nb)O3 Very large EO coefficient

$\lambda = \frac{2\pi R}{m}$

$\lambda_{eq} = \frac{1}{2} \lambda'$

λ': Resonance wavelength

λ_{eq}: Equivalent index

r: Ring radius

m: Integer

$P_{core}, P_{cladding}$: Power in core, cladding

$D_{core}, D_{cladding}$: Diameter of core, cladding
Operation Voltage

<table>
<thead>
<tr>
<th>Material</th>
<th>Operation Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST/(\text{SiO}_2)</td>
<td>56.9V (D_{\text{core}}=6.0 \mu\text{m})</td>
</tr>
<tr>
<td>LN/(\text{SiO}_2)</td>
<td></td>
</tr>
<tr>
<td>LN/KDP</td>
<td></td>
</tr>
<tr>
<td>KTN/(\text{SiO}_2)</td>
<td></td>
</tr>
<tr>
<td>KTN/KDP</td>
<td></td>
</tr>
</tbody>
</table>

LN and BST have high operation voltage. KTN is promising if available in Si process.

Time Dependence of Resonance Characteristics

- \(R = 12 \mu\text{m}, n_{eq} = 2.0\)
- No bending loss

Time Dependence of Peak Power and FWHM

- \(R = 12 \mu\text{m}, n_{eq} = 2.0\)
- Coupling 0.2

Operation Speed

- Operation speed is limited by resonance time.
- Operation frequency > 66 GHz

Conclusions

- We have fabricated multimode ring resonators. The resonance characteristics behaved similarly to those of single-mode ring resonators.
- The multimode ring resonators are useful for interconnection on Si chips.
- We proposed ring resonator optical switches using EO materials, which are promising devices for application to interconnection on Si chips.