Cu Thin Film Fabrication by H₂ Addition Sputtering and Electroplating

Masahiro Ooka and Shin Yokoyama

Research Center for Nanodevices and Systems, Hiroshima University,
1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
Phone: +81-82-424-6265 Fax: +81-82-424-3499 E-mail: ooka@sssys.hiroshima-u.ac.jp

1. Introduction

Recently, Cu is widely used in ULSI for metal interconnection. The merits of Cu are (1) resistivity of Cu (1.7 µΩcm) is lower than that of Al or Al alloys and (2) higher resistance to electromigration [1]. There are many deposition techniques for Cu film on Si wafer. The popular techniques for filling trenches or vias are metal organic chemical vapor deposition, electroplating and electroless plating. Today, Cu electroplating is most popular technique. A conformal and conductive seed layers are necessary for Cu electroplating. The seed layer is generally deposited by sputtering.

Oh et al. reported the effects of plasma H₂ pretreatment and also the combined effects of plasma H₂ pretreatment and rapid thermal annealing of the Cu seed layers [2]. The plasma H₂ treatment can remove carbon and oxygen contaminants from the Cu seed layer giving more Cu atoms free for electroplating. We think that H₂ adding is effective for coverage to sub-micron hole in metal sputtering.

In this paper, we study the effect of H₂ adding to Cu sputtering.

2. Experiment

DC magnetron sputtering system we used is schematically shown in Fig. 1. The source DC voltage was set to 500 V. Pressure is 5 mTorr. Plasma source gas was Ar or mixture of Ar and H₂.

Cu surface was measured by atomic force microscope (AFM) and X-ray diffraction (XRD). AFM image shows roughness of Cu surface. And XRD spectra show Cu orientation and grain size.

And next, we tried Cu electroplating. The electroplated Cu films were grown on the sputtered Cu layers (650nm). The electrolyte was composed of Cu sulfate (200 g/l), sulfuric acid (27 cm³/l), polyethylene glycol (1.3 g/l), and chloride ions (1000 ppm). The solution temperature was 25°C.

3. Results and Discussions

3.1 Effect of H₂ adding on the top Cu surface

A 300 nm thick thermal SiO₂ layer was grown on the Si wafers and then a TiN film was sputtered with the thickness of 30 nm. Finally, Cu was sputtered with the thickness of 650 nm on it. The plasma source gas is the mixture of H₂ (0 - 60%) and Ar.

Cu surface condition was observed using AFM. The AFM images are shown in Fig. 2. Average roughness tends to decrease by H₂ addition. Power spectrum calculated from AFM line profiles (Fig. 3) using fast Fourier transform (FFT) was shown in Fig. 4. The ratio of the high wave number component (4-8 μm⁻¹) with respective to low wave number component (1-3 μm⁻¹) increases by the H₂ addition. It is suggested that Cu surface becomes much smoother by H₂ adding (see Ra in Fig. 2).

Next, crystallinity of sputtered Cu film was investigated by XRD (Fig. 5). All the measured Cu films are almost (111) oriented. However, very small amount of (200) peaks are observed. Figure 6 shows (111) and (200) orientation peaks. All peaks decrease with increasing H₂ adding. However, (200) peaks more rapidly decreases than (111) peak intensity. This means that the more preferred orientation (to (111)) Cu film can be obtained by H₂ adding. This mechanism is unclear at this model.

3.2 Effect of H₂ adding to electric property

Resistivity of sputtered Cu films was measured using van der Pauw method [3]. Table I shows the Cu resistivity. The resistivity tends to decrease with increasing adding H₂. And Cu film, which was grown and stored in atmospheric ambient for 3 months, has very high resistivity. In our opinion, Cu surface was oxidized.

In case of H₂ adding, hydrogen-termination may occur on the surface of deposited Cu. And also O atoms on Cu surface may be scavenged by H radicals (see Fig. 7). H₂ adding causes the Cu surface smooth and suppresses oxidation. Suppression of Cu oxidation also contributes to suppression of the increase of resistivity.

3.3 Cu electroplating

Electroplated Cu was deposited on sputtered Cu seed layer. The deposition rate tends to increase with plating current (see Fig. 8(a)). About 300nm thick electroplated Cu films were deposited and their surface roughness was measured by AFM. Figure 8(b) shows a relation between the roughness and film thickness. The roughness seems to depend on Cu film thickness and not depend on plating current.

Next, the electroplated Cu on sputtered Cu (using Ar or Ar/H₂ mixture plasma) layer is compared (5mA/cm²). It is found that the electroplated Cu surface roughness is not dependent on Cu seed layer, i.e., H₂ adding during sputtering deposition of seed layer does not affect the final surface roughness.

4. Conclusions

By addition of H₂ to Ar plasma in Cu sputtering, it is found that the surface becomes smooth and the resistivity tends to decrease with increasing the amount of H₂. However, we found that Cu surface roughness becomes same after electroplating of 300 nm.

References
Fig. 1 Schematic diagram of magnetron sputtering apparatus.

Fig. 2 AFM images of Cu film sputtered Ar/H₂ mixture of (a) H₂ (0%) (b) H₂ (20%) and (c) H₂ (60%).

Fig. 3 Line profiles of Cu films sputtered in H₂ (0%), H₂ (20%) and H₂ (60%)/Ar.

Fig. 4 Power spectrum by FFT of Cu films sputtered at (a) H₂ (0%), (b) H₂ (20%) and (c) H₂ (60%).

Fig. 5 X-ray diffraction patterns of Cu films sputtered at (a) H₂ (0%), (b) H₂ (20%), and (c) H₂ (60%).

Fig. 6 (111) and (200) orientation peaks for X-ray diffraction patterns of the Cu films sputtered in Ar (a), H₂ (20%)/Ar (b), and H₂ (60%)/Ar (c).

Fig. 7 Mechanism of H₂ adding effect.

Fig. 8 Effects of plating current on the deposition rate of Cu films (a), deposition rate and roughness (b).

Fig. 9 AFM images of electroplated Cu film. Cu seed layer is sputtered at (a) H₂ (0%) and (b) H₂ (40%).
Cu Thin Film Fabrication by H_2 Addition Sputtering and Electroplating

M. Ooka and S. Yokoyama

Introduction

The popular techniques for filling trenches or vias are metal organic chemical vapor deposition, electroplating, and electroless plating. A conformal and conductive seed layer is necessary for Cu electroplating. We found that H_2 addition sputtering can make smooth Cu layers. We study the effect of H_2 addition sputtering to Cu electroplating.

Process Flow

- Thermal SiO_2: 300nm
- TiN film is sputtered (30nm)
- Cu deposition: 650nm (DC magnetron sputtering, 500V, 5mTorr)
- Gas: H_2 (0%~60%) / Ar

SEM photographs of sputtered Cu surface

H_2 addition to Cu sputtering influences Cu surface roughness.

XRD patterns of sputtered Cu surface

All the measured Cu films are almost (111) oriented.

H_2 adding effect on Cu crystalinity

- Same FWHM at XRD peak
- Same grain size
- All XRD peak is decreased
- Crystalinity degraded
- (111) / (200) peak ratio increased
- Adding H_2 tend to make (111) plane
Experimental

Electroplating by CuSO₄

Contents of electroplating solution

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuSO₄</td>
<td>120 g</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>16 cm³</td>
</tr>
<tr>
<td>HCl</td>
<td>0.1 cm³</td>
</tr>
<tr>
<td>PEG</td>
<td>0.8 g</td>
</tr>
</tbody>
</table>

Atmosphere: Ar
Temperature: 25 ºC

PEG: polyethylene glycol

Experimental

Effect of plating current

- Deposition rate depends on plating current.
- The roughness depend on Cu film thickness and not depend on plating current.

AFM images of electroplated Cu

Condition 5mA/cm², 300nm deposition

- Surface roughness become similar.
- H₂ adding during sputtering deposition of seed layer does not affect the final surface roughness.

Comparison of XRD peak on electroplating

- Sputtered Cu: 200nm thick
- H₂ adding during sputtering deposition of seed layer does not affect the electroplated surface roughness.

Conclusion

We deposited the electroplated Cu on H₂ addition sputtered Cu.

H₂ adding during sputtering deposition of seed layer does not affect the electroplated surface roughness.

Orienter of electroplated Cu depend on orientation of Cu seed layer, and H₂ addition sputtering can be controlled orientation of electroplated Cu.